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Abstract

We present an improved semi-empirical (surrogate) model for the prediction of fibrinogen adsorption to the surfaces of polymers in a

combinatorial library. The most important novel features of this model vis a vis our previous method is that it accurately predicts fibrinogen

adsorption to a group of 20 polymers based on their structure alone, i.e. without using any experimental data for these 20 polymers. This

implies that the model predictions can be generated prior to synthesis of these structures and their adsorption affinities can be evaluated

entirely in silico. Modeling is accomplished by combining several more traditional computational methods in a ‘hybrid’ approach. The

technique is used to systematically eliminate experimental inputs (air–water contact angle and glass transition temperature) from an existing

artificial neural network model in favor of inputs that are derived mathematically from two-dimensional representations of polymer structure.

We use partial least squares (PLS) regression to select structure-based molecular descriptors that are subsequently used to generate

computational models for the subsequent prediction of protein adsorption by artificial neural networks (ANNs). The model provides accurate

predictions of fibrinogen adsorption to polymeric surfaces using only adsorption data from a small representative subset of the polymer

library. This work represents a major step toward the goal of generating virtual polymer libraries for rational design/optimization for

properties relevant to biomedical applications.

q 2005 Elsevier Ltd. All rights reserved.
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1. Introduction
1.1. Fibrinogen adsorption and the performance of

biomedical materials

Protein adsorption to surfaces is thought to be extremely

relevant to biological/immunological response [1] in

particular, and critical to cell attachment in general. The

performance of materials in biomedical applications is

highly dependent on the surface adsorption affinity for

specific proteins [2]. Tailoring the fibrinogen adsorption

affinity of biomedical implant materials, for example, is a

necessity as this protein is known to participate in processes

leading to blood clotting [3]. Doing this in a manner less

costly than trial-and-error requires a method to predict the
0032-3861/$ - see front matter q 2005 Elsevier Ltd. All rights reserved.
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fibrinogen adsorption affinity for biomedical candidate

materials based on their structure.

1.2. Modeling of protein adsorption and in silico materials

evaluation using ANN

The most comprehensive way to predict protein adsorp-

tion onto a polymer surface is to explicitly calculate the

energy of adsorption of individual fibrinogen molecules

onto the implant material using either ab initio, atomistic or

molecular mechanics methods. Indeed, recent progress has

been made in evaluating the relative energies of adsorption

of individual protein residues onto the surfaces of self-

assembled monolayers [4–7]. However, such computations

for entire protein molecules on the kinds of complicated

surfaces likely to be used in biomedical applications are

computationally intractable at the present time.

Therefore, we previously developed a semi-empirical

approach for the prediction of fibrinogen adsorption to

polymer surfaces and have demonstrated its usefulness
Polymer 46 (2005) 4296–4306
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within a combinatorial library of tyrosine-derived biode-

gradable polymers [8–10]. The computational procedure is

inspired by quantitative structure activity relationship

(QSAR) [11] model protocols developed by researchers in

the pharmaceutical industry. QSAR is used primarily for

designing small-molecule compounds with optimized

bioactivity. From QSAR we borrow quantifications of

molecular structure called ‘molecular descriptors’ to

represent the polymers. The strategy allowed us to predict

fibrinogen adsorption to polymers without explicitly

representing the process in all its complexity. This was

done by using adsorption data for a subset of polymers,

mathematical descriptors and experimental measurements

of physiomechanical properties (Fig. 1). In the ‘training’

phase, we used non-linear optimization to correlate

(phenomenologically) calculated polymeric structural

descriptors and two experimental descriptors [glass tran-

sition temperature (Tg) and air–water contact angle (q)

measurements] with measured protein adsorption for a

subset of polymers in the library (Fig. 1). The subset of

polymers used for training is referred to as the ‘training set’.

The correlations were then used, along with the same

descriptors calculated or measured for the new structures,

by an artificial neural network (ANN) model to predict the

protein adsorption to polymers within the same family but

outside the model training set in the ‘validation’ phase.

Polymers whose fibrinogen adsorption was predicted based

on their descriptors and the training set fibrinogen adsorp-

tion data belonged to the ‘validation set’. We used an ANN

instead of more traditional multivariate linear regression

techniques because it has the capability to describe even

nonlinear relationships between descriptors and experimen-

tal data [12].

The accuracy of the ANN fibrinogen adsorption model

was sufficient to distinguish between the highest and lowest

fibrinogen adsorbing polymers. Such a model permits the

polymer scientist to focus attention only on the most

promising candidate materials in lieu of exhaustive

synthesis and experimental testing of all candidate poly-

mers. This is important because polymer synthesis
Fig. 1. Semi-empirical modeling using ANN. Our goal is to eliminate the experim

sets.
techniques have advanced to such a stage that the number

of compounds that can be synthesized far exceeds the

number that can be tested or evaluated in vivo and even in

vitro at reasonable cost [9]. Thus, utilization of such

surrogate (semi-empirical) models has the potential to speed

the pace of biomedical materials development while saving

considerable time and resources as well as to make rational

optimization/design of materials for biomedical implants

possible.
1.3. Limitation of previous model: experimental descriptor

inputs required

Despite the success of our original fibrinogen adsorption

model [10], we were unable to eliminate both the

experimental inputs, Tg and q, without substantial degra-

dation of accuracy. This means that, in order for the ANN

model to generate a prediction of fibrinogen adsorption to a

specific polymer, that polymer has to be synthesized and

then its Tg and q have to be measured. While this model is

still useful in avoiding unnecessary and expensive protein

adsorption testing of non-optimal candidate polymers, it

would respond better to the current needs of the biomedical

materials research community if it could evaluate material

performance entirely in silico, i.e. prior to synthesis. Then,

suitable substitutes for Tg and q in the form of calculated

descriptors must be found.
1.4. Modeling of biological response using partial least

squares regression

Recently, we have also demonstrated the capability of

one of the more traditional QSAR approaches to model a

relatively complicated phenomenon—cellular response in

the form of the metabolic activity (MA) of fetal rat lung

fibroblasts (FRLF) exposed to the surfaces for several hours.

We used partial least squares regression (PLS) along with

principal component analysis (PCA) to predict FRLF MA

[13]. As with the ANN models, PLS models are trained on

both experimental and molecular descriptor data and then
ental descriptor inputs (dashed boxes) for both the training and validation



Table 1

List of 40 polyarylates used to build and validate the ANN models, together

with values of fibrinogen adsorption amount (relative to polypropylene

control) and standard deviation across four independent measurements

Pend. Diacid Fibrinogen adsorption

(% PP control)

STDEV

(% PP)

DTiB Sebacate 56.60 9.96

DTO Glutarate 64.80 12.96

DTO Sebacate 66.00 13.46

HTH Adipate 76.20 18.36

HTH Suberate 77.16 13.97

DTO Adipate 78.30 13.00

DTBn Sebacate 80.30 16.22

DTO Suberate 82.19 13.48

DTiB Adipate 88.00 16.02

DTH Suberate 91.68 17.24

DTBn Suberate 92.10 13.35

DTH Glutarate 96.75 20.61

DTM Sebacate 99.14 22.50

DTB Suberate 105.06 17.44

HTE Suberate 107.69 15.40

DTsB Suberate 108.71 21.52

DTiP Adipate 121.76 8.89

DTO Succinate 121.97 22.93

DTB Methyl

adipate

122.06 19.53

DTB Glutarate 123.38 18.63

HTE Adipate 125.19 19.28

DTsB Adipate 125.35 22.19
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used to predict the former for novel or untested structures.

The major differences between this and the ANN surrogate

modeling discussed above rest in the computational details

and the nature of the experimental data being predicted. The

PLS models have shown a degree of accuracy sufficient for

rational design in terms of cellular response, and the training

methods are substantially less computationally expensive

than those for ANN. In addition, the descriptor selection

procedure in PLS is able to ascertain the aggregate

significance of sets of descriptors by accounting for

synergistic effects between them. While this is also

theoretically possible with the descriptor–selection routine

applied in the ANN approach [10], it is considerably less

straightforward in that context.

1.5. The rationale for a combined method approach

Our goal in the present study is to eliminate the

experimental inputs (Tg and q) from the original ANN

model for fibrinogen adsorption affinity without reducing

the accuracy of prediction. First we show that this is not

possible using the current single method (ANN) approach.

Next, we present an approach that combines aspects of our

ANN models with PLS in order to maximize the advantages

of both. In this approach, PLS is used for feature extraction

precisely because it can account for synergistic effects

among collections of descriptors in a way that our ANN

approach does not. Subsequently, the ANN is used in

conjunction with the features, or descriptor sets, extracted

by PLS in order to create a model of fibrinogen adsorption

affinity that can account for non-linear relationships

between polymer structural properties and this target

property. Finally, we show that the combined approach

generates a model that requires no experimental descriptor

inputs yet is as accurate as the original model.
DTM Methyl

adipate

125.70 28.03

DTB Adipate 127.12 27.46

DTB Succinate 129.36 18.76

DTE Adipate 131.21 13.38

DTH Succinate 131.93 22.96

DTsB Glutarate 132.32 11.64

DTBn Methyl

adipate

138.98 17.65
2. Methodology/background

2.1. The library of tyrosine-derived polyarylates

The ‘polyarylates’ are a series of structurally related
Fig. 2. Library of 112 polyarylates derived from 14 tyrosine-derived

diphenols and 8 diacids. Polymers are strictly alternating copolymers

consisting of a diacid (DA) and a diphenol (DP) component varied at Y and

R, respectively. Commonly used pendant chains are ethyl, butyl, hexyl,

octyl, and dodecyl esters, and diacids are succinic, glutaric, adipate, etc.

The entire list of pendant chains and diacidic components can be found

elsewhere [13]. The number of methyl groups in the DP component is also

variable.
polymers derived from monomers consisting of a tyrosine-

derived diphenol and a diacid (Fig. 2). In total, there are 112

polymers resulting from all possible choices of diacid and

pendent [14–16].

For this study, polymers were solvent-cast in a procedure

that has been described in detail previously [16]. Briefly,

polymers were dissolved in methylene chloride (5% (w/v)).

Next, the polymer solutions were filtered through 0.45 mm
PTFE filters (Whatman Inc., Clifton, NJ, USA). Then,
DTM Suberate 139.09 19.89

DTBn Adipate 142.16 22.89

DTH Diglycolate 142.29 17.36

DTO Diglycolate 142.60 28.52

DTM Adipate 142.69 15.13

DTiP Methyl

adipate

142.85 18.00

HTE Methyl

adipate

146.01 20.44

DTE Glutarate 151.44 20.44

DTsB Methyl

adipate

153.27 19.47

DTE Methyl

adipate

156.74 24.14

HTE Succinate 182.15 29.14
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individual polypropylene micro titer wells on the plates

were filled with test polymer solutions. In order to evaporate

the methylene chloride, the plates were kept at a

temperature of 50 8C for 3 h in a drying oven. This process

generated mm-thick and macroscopically smooth polymer

films inside the wells.

2.2. Experimental data: immunofluorescence assay

The immunofluorescence protocol has been reported

previously [17]. Briefly, a 25 mL aliquot of human

fibrinogen in phosphate buffered solution (PBS) was

incubated into polyarylate-coated wells on a 384-well

polypropylene plate for 1.5 h at 37 8C, followed by rinsing

with PBS. Wells were then incubated with 1% (w/v) bovine

serum albumin in phosphate buffered solution (BSA-PBS)

for 30 min at 37 8C in order to block non-specific antibody

binding. Afterwards, the plates were rinsed with PBS and,

subsequently, a measurement of the background signal was

taken with the fluorescence reader (Spectra Max Gemini,

Molecular Devices, Sunnyvale, CA, USA). Fluorescently

labeled antibodies were then allowed to bind to the surface-

adsorbed fibrinogen for 1.5 h at 37 8C. Following this, the

micro wells were rinsed again with PBS and the final

fluorescence measurements were performed. Fibrinogen

adsorption to non-coated polypropylene wells was used as

an internal control to normalize the fluorescence signals

within different plates. This procedure was carried out for 40

different polyarylates and the result is given in Table 1.

2.3. Molecular descriptors

A total of 109 descriptors were calculated using either the

molecular operating environment [18] or Dragon [19]

commercial software packages. Only two-dimensional (i.e.

conformation independent) descriptors were used in the

present study because the conformation of the polymers in

the experimental environment was unknown. Input to MOE

or Dragon consists of the basic molecular structure derived

from the chemical formulae. Values of the various

molecular descriptors are calculated as described elsewhere

[10]. The descriptors vary widely from rather simplistic

atomic and bond counting schemes to those representing the

projection of a particular property (e.g. partial charge) [20]

onto the van der Waals surface of the molecule. Others are

purely empirical parameters based on fitting linear functions

of atomic contributions to large sets of experimental data for

many different molecules [21].

2.4. ANN methodology

The mathematical details of the computational methods

used in the ANN procedure have been published elsewhere

[10]. Briefly, modeling of fibrinogen adsorption in the

polyarylate library is accomplished in two stages. In stage I,

109 ‘descriptors’ are generated for each polymer. These
quantify various molecular and structural properties.

Subsequently, the significance of each descriptor with

respect to the set of experimental bioresponse data is

ascertained using a quantity borrowed from machine

learning routines called the Information Gain (IG) [22,23].

In stage II (depicted in Fig. 1), the most significant

descriptors, in conjunction with the experimental data, are

used to construct an ANN model for half of the polymer set

(selected at random) in order to predict bioresponse for the

remaining half of the data set. The experimental data was

divided in half, one half (i.e. the training set) to train the

model and the other half (the test set) to validate the model.

The ANN used was a three-layer perceptron with two

hidden neurons utilizing a sigmoid function with an inverse

length scale parameter (k) equal to 0.1.

One of the more novel aspects of this modeling

procedure was the use of a Monte Carlo (MC) approach in

the generation of the final predicted values. The purpose is

to include the experimental variation explicitly in the

model. We have shown that this gives a more realistic

assessment of the ability to generalize model-generated

predictions [10]. Here we provide only an outline of the

procedure. A sequence of 1000 computer-based (pseudo)

experiments is performed wherein the mean value of

fibrinogen adsorption for each polymer was perturbed by a

random number obtained from a normal distribution based

upon the experimental standard deviation. For each

experimental data set, an ANN was built using one half of

the experimental data set (selected at random but identical

for all pseudo-experiments) for training. The final predic-

tions, then, are the averaged predictions over 1000 MC

pseudo experiments for each polymer.

2.5. Partial least squares regression and principal

component analysis

Though PLS regression and PCA can be used in the

surrogate modeling of protein adsorption data, here they are

both employed as a pre-filtering method to enrich the ANN

model [24–27]. PLS/PC analysis allows us to assess the

significance of combinations of descriptor variables in a

way that accounts for synergetic effects that might exist

among what are otherwise apparently uncorrelated par-

ameters. As the details of the general computational

methodologies appear elsewhere [13], in this section we

focus on application of the method as used in the current

context [28–32].

First, the principal components for the target property

data were determined using the full set of 109 descriptors.

Then, several PLS models were generated to predict the

target property using from one to four of the most significant

principal components. The correlation coefficient for each

model was calculated, the results were tabulated and models

with r values less than 95% of the correlation coefficient of

the best statistical model were discarded. Of the remaining

models, the one with the fewest number of principal
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components was chosen to represent the data. Then, all

principal components included in the PLS model were

manually analyzed and the total contribution of each

individual descriptor to the PCs was normalized, plotted

and ranked. Subsequently, a new PLS model was generated

using only the set of descriptors that had loadings in the first

principal component [13] greater than 0.1. In order to

eliminate all redundant descriptors, the forced pruning

method was applied. This procedure is very similar to the

well-known leave-one-out technique when each member of

the parameter set is eliminated from the iteratively repeating

PLS analysis. The final model, then, had the fewest

descriptors, the fewest principal components and a corre-

lation coefficient not less than 90% of that of the original

model. This set of PLS/PCA-selected descriptors were then

employed to construct our ANN model.
2.6. Model validation/evaluation

Each model is evaluated by calculating the ‘correlation

coefficient’ r between the predictions and the experimental

results. The coefficient r ranges fromK1%r%1, where rZ
1 is a perfect correlation and rZK1 represents a perfect

inverse correlation. The mathematical definition of r is:

r Z
n
Pn

iZ1 xiyi K
Pn

iZ1 xi

Pn
iZ1 yiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

n
Pn

iZ1 x2i K
Pn

iZ1 xi

� �2h ir
n
Pn

iZ1 y2i K
Pn

iZ1 yi

� �2h i

(1)

where n, number of polymers; x, predicted value; y,

measured value.

All correlation coefficients are generated based on a

comparison between the predicted values and the mean

experimentally measured values without an accounting for

the experimental variation. In the case where the model is

the result of a series of predictions averaged over the course

of a MC analysis, we report the correlation coefficient

between the averaged predicted values and the experimental

mean measured values. This is somewhat different than the

number reported in our previous work [10], which was the

average Pearson correlation coefficient over all pseudo-

experimental models and the corresponding standard

deviation of that quantity. Here we have chosen to report

the correlation coefficients (r) of the averaged predictions

because this allows a direct comparison with PLS/PCA

results for which, at the time of writing, a MC analysis is not

possible.
Table 2

Statistics for fibrinogen adsorption model using the number of hydrogen atoms d

Number of MC experiments Training set fraction (%) Traini

1000 50 0.85

1000 100 0.80

1 100 0.80
3. Results and discussion
3.1. Single model results: ANN

A summary of the results for our original model [10] for

polyarylate fibrinogen adsorption affinity appears in Table 2

and the results for the validation set model generated in the

1000 step MC analysis (first row, Table 2) are plotted in

Fig. 3. The three inputs to this model, the number of

hydrogen atoms in the repeat unit, Tg and q, were

determined to be the most significant of the original set of

109 using the information gain criterion. Again, all of the

predictions for the validation set (Fig. 3) are generated using

only the fibrinogen adsorption data in the training set

(i.e. the model is blind to the fibrinogen adsorption data in

the validation set). Note that the model predictions are

within experimental error for 75% of the validation set

which is a level of accuracy sufficient for materials

evaluation.

In an effort to replace the two measured inputs by

calculated descriptors, we used the same methodology to

generate models of both Tg and q using the original set of

109 descriptors. We chose to use the five most important

descriptors, as defined by the IG criterion, for each of these

measurements in the ANN models. The statistical par-

ameters are summarized in Tables 3a and 3b, while the

validation set model predictions (1000 MC analysis, Tables

3a and 3b row 1) are plotted against the experimental data in

Fig. 4.

First we note that the validation set correlation

coefficients for the models Tg and q models are 25 and

20% higher than for the fibrinogen adsorption model using

these parameters as input (Table 2). This result was

expected as the Tg and q models predict physicomechanical

properties that are far less complex than the physicochem-

ical process of protein adsorption. Second, the most relevant

descriptors (as defined by the IG criterion) to Tg and q make

intuitive sense. The Tg descriptors, for example, are the five

descriptors in the original set of 109 that have some intuitive

connection to chain flexibility. This is particularly obvious

for the two most significant descriptors, the number of

rotatable bonds and the Kier molecular flexibility index

[33], but is also true for the number of single bonds as well

as the latter two descriptors which both represent the shape

or spatial extent of the molecule (Kier alpha modified shape

index and third Kappa shape index [33]). The relevance of

the most significant descriptor in the qmodel, the number of

secondary sp3 carbon atoms in the repeat unit, is less
escriptor along with the two experimental inputs Tg and q

ng set correlation coefficient Validation set correlation coefficient

0.76

na

na



Fig. 3. Validation set results for 1000 MC fibrinogen adsorption model using descriptors in Table 2.

Table 3a

Statistics for Tg model using the 5 descriptors identified by the information gain criterion as being the most relevant: (1) the number of rotatable single bonds,

(2) the Kier molecular flexibility index [33], (3) the number of single bonds, (4) 2-path Kier alpha modified shape index [33] and (5) the third kappa shape index

[33]

Number of MC experiments Training set fraction (%) Training set correlation coefficient Validation set correlation coefficient

1000 50 0.96 0.95

1000 100 0.96 na

1 100 0.95 na

Fig. 4. (a) Validation set results for 1000 MC Tg model using descriptors in Table 3a. The average experimental error for the Tg measurement is G28.

(b) Validation set results for 1000 MC q model using descriptors in Table 3b. The average experimental error for the q measurement is G58.

J.R. Smith et al. / Polymer 46 (2005) 4296–4306 4301



Table 3b

Statistics for q model using the 5 descriptors identified by the information gain criterion as being the most relevant: (1) the number secondary sp3 carbons, (2)

the number of hydrogen atoms, (3) the hydrophilic factor [34], (4) the number of single bonds and (5) the sum of the van der Waals area of atoms in the

molecule with negative partial charge [20]

Number of MC experiments Training set fraction (%) Training set correlation coefficient Validation set correlation coefficient

1000 50 0.95 0.91

1000 100 0.94 na

1 100 0.93 na

Table 4

Statistics for fibrinogen adsorption model generated with Tg and q replaced by calculated descriptors: (1) the number secondary sp3 carbons, (2) the number of

hydrogen atoms, (3) the hydrophilic factor, (4) the number of single bonds and (5) the sum of the van der Waals area of atoms in the molecule with negative

partial charge, (6) the number of rotatable single bonds, (7) the Kier molecular flexibility index, (8) 2-path Kier alpha modified shape index, and (9) third kappa

shape index

Number of MC experiments Training set fraction (%) Training set correlation coefficient Validation set correlation coefficient

1000 50 0.89 0.72

1000 100 0.82 na

1 100 0.80 na
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intuitively obvious. However, the number of hydrogen

atoms in the repeat unit, the hydrophilic factor [34], the

number of single bonds descriptors can all be related to the

overall chain hydrophobicity. The air–water contact angle q

corresponds to one of the best known measures of surface

hydrophobicity.

Table 4 gives the statistics for the fibrinogen adsorption

model that results when Tg and q are replaced by the

descriptors in their respective ANN models. The model has

9 inputs: the ‘number of hydrogen atoms’ descriptor from

the original model along with the 8 unique descriptors from

the Tg/q set. The model predictions are compared with the

experimental values in Fig. 5.

We note that this model is less accurate than the original

(Fig. 3). This is reflected both in the decrease of the

validation set correlation coefficient by 5.5% (Tables 2 and 4)

and the fact that it predicts only 65% (Fig. 5) of data to

within experimental error. The corresponding figure for the

original model was 75%. Despite this, the resultant model

represents a considerable advancement over the original in

the sense that it does not include any experimental

descriptors. Further, the input parameters are physically

meaningful and many (like the number of rotatable bonds,

the number of single bonds and the hydrophobicity) can be

manipulated intuitively by the synthetic chemist. However,

we would prefer a model that does not sacrifice accuracy

and requires fewer descriptors. Such a model would be a

more viable tool for in silico materials evaluation and

rational materials design.
1 ‘Density’ or molecular density is defined as the molecular weight

(calculated using atomic weights including implicit hydrogens) divided by

the Van der Waals volume (calculated using a connection table

approximation) [18].
3.2. PLS descriptors

For the reasons outlined in the previous section, PLS is

expected to yield descriptor sets with a higher aggregate

predictive capability than the IG method used in the ANN
analysis. Thus, we might expect that PLS/PCA will select a

superior set of descriptors to replace the experimental

quantities in the original fibrinogen adsorption model

(Table 2, Fig. 3) and improve upon the results obtained

with the IG analysis (Table 4 and Fig. 5).

The five significant descriptors according to the PLS/PC

analysis for Tg and q are given in Tables 5a and 5b. These

are the descriptors that had the highest contributions to the

first principal component for both models. Note that the Tg

and q descriptor sets in Tables 5a and 5b overlap to a much

greater degree than those identified by the IG criterion

(Tables 3a and 3b) and, in fact, to a much greater degree

than might be expected given the difference in the molecular

origins of the physiomechanical properties being modeled.

Simply put, Tg depends strongly on molecule flexibility

while q on molecule hydrophobicity and these are

conceptually distinct parameters. Indeed, this overlap

implies two important points: (1) that there is redundancy

in some of the descriptor definitions (i.e., the descriptors are

not linearly independent), and (2) that there are synergistic

effects between the descriptors that are unaccounted for by

either intuition or individual examination as is performed in

the IG analysis. The former point can be easily explained

considering structural changes within the context of the

polyarylate library. For example, the length of the aliphatic

portion of the backbone ought to be related to both

log P(o/w) and the molecular density.1

It should also be noted that, while the descriptor sets

identified by PLS/PCA (Tables 5a and 5b) are not identical

with those identified by IG (Tables 3a and 3b), they are



Fig. 5. Validation set results for 1000 MC fibrinogen adsorption model using descriptors in Table 4.
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entirely consistent in terms of the physical properties

being represented. For example, octanol/water partition

coefficient reflects the hydrophobic/hydrophilic behavior

of the molecule: a property strongly related to the

hydrophilic factor in the IG model. In addition, the

number of aliphatic ethers in the repeat unit corresponds

to the sum of the van der Waals surface area of atoms

in the molecule with negative partial charge in Table

5b. The molecular density, van der Waals volume and

Kier index can be seen as important measures of the

molecular shape complementarity as can the Kier

molecular flexibility index, the number of single

bonds, 2-path Kier alpha modified shape index, and

the third kappa shape index from Table 5b.

To corroborate the above, we have shown that the set of

unique descriptors identified by PLS contains effectively all

of the physical information in the corresponding descriptors

from the IG/ANN analysis. This was accomplished in the

following manner. Altogether, 8 ANN models were built to

predict each of the descriptors from IG/ANN analysis using

the 8 descriptors supplied by the PLS/PCA analysis (Tables

5a and 5b). Each of the models was trained on half of the

polyarylate structures (training set) and used to predict

descriptor values for the other half (validation set). The

results appear in Table 6. Note that the validation set

correlation coefficient for each of the models was greater

than 0.91 and the overall average was 0.96. This compares

an average validation set correlation coefficient of 0.13 if

eight random descriptor inputs are used to train the models
Table 5a

The five most significant descriptors for Tg according to the PLS/PCA model

Significance rank Molecular descriptor

1 The molecular density

2 Log of the octanol/water partition coefficient from the

3 Log of the octanol/water partition coefficient calculat

4 Molecular refractivity from the linear atom type mod

5 Sum of atomic van der Waals volume scaled on carbo
in the same manner, indicating the high degree of predictive

capability of this set of descriptors.

Table 7 gives the statistics for the fibrinogen adsorption

model that results when Tg and q are replaced by the 8

unique descriptors identified by PLS/PCA. The model has a

total of 9 inputs, the ninth being the ‘number of hydrogen

atoms’ descriptor from the original. The model predictions

are compared with the experimental values in Fig. 6.

Note that the validation set correlation coefficient for this

model is considerably improved over the value generated

using the 8 IG descriptors along with the number of

hydrogen atoms (Table 4 and Fig. 5). Indeed, the validation

set correlation coefficient is the same as the original model

containing Tg and q (Table 2), yet all descriptors are

computed (i.e. no experimental descriptors are used).

Further, this model is able to predict 75% of data to within

experimental error. This is more accurate than the IG

descriptor model and equal in accuracy to the original. Thus,

PLS/PCA descriptor selection has enabled us to generate an

ANN model that is as accurate as the original, but uses no

experimental descriptor inputs.

Despite the apparent success of this model, it is true that

it represents a threefold increase in the number of

descriptors over the original model (Fig. 3). In fact, some

of these descriptors are much more relevant than others. For

the both Tg and q parameter sets in Tables 5a and 5b, the

molecular density was the most important contributor

following by the octanol/water partition coefficients and

the number of aliphatic ethers. Models based only on these
linear atom type model [35]

ed from the atomic model based on the corrected protonation state [36]

el [21]

n atom



Table 5b

The five most significant descriptors for q according to the PLS/PCA model

Significance rank Molecular descriptor

1 The molecular density

2 Log of the octanol/water partition coefficient from the linear atom type model [35]

3 Number of aliphatic ethers in the repeat unit

4 The first kappa shape index of Kier [33]

5 Molecular refractivity calculated from the atomic model based on the corrected protonation state [36]

Fig. 6. Validation set results for 1000 MC fibrinogen adsorption model using descriptors in Table 7.
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three descriptors could correlate 89% of the Tg and 91% of q

experimental results. Since we strive to create as simple

model as possible, we eliminated all but the molecular

density and the log of the octanol water partition coefficient

from the model. The results appear in Table 8 and Fig. 7.

Note that dropping six descriptors from the model

decreases the validation set correlation coefficient by only

around 2.6%. This is an indication of the high predictive

capability of the remaining descriptors, and further evidence

of the synergistic effects between molecular density and the

log of the octanol water partition coefficient. Further, this

model is able to predict 75% of the experimental results to

within experimental uncertainty. Therefore, its predictions
Table 6

Validation set correlation coefficients for ANN models generated using the eight

unique descriptors identified by IG

IG identified descriptor

The number of rotatable single bonds

2-Path Kier alpha modified shape index

Third kappa shape index

The number secondary sp3 carbons

The Kier molecular flexibility index

Sum of the van der Waals surface area of atoms in the molecule with negative p

The number of single bonds

The hydrophilic factor

The average correlation coefficient for models using the same number of random
are as accurate as the original model despite the fact that it

includes no experimental descriptor inputs and has only

three inputs.
4. Conclusions and future work

We have shown that it is possible to use an approach that

combines artificial neural networks and partial least squares

regression to generate models that accurately predict

fibrinogen adsorption affinity based on structure alone, i.e.

without the use of experimental descriptors. The present

work, then, builds substantially on our previous results in
unique descriptors identified by PLS (Tables 5a and 5b) to model the eight

Validation set correlation coefficient

0.92

0.94

0.95

0.95

0.96

artial charge 0.96

0.98

0.99

descriptor inputs is 0.13.



Table 7

Statistics for fibrinogen adsorption model generated with Tg and q replaced by calculated descriptors: (1) the molecular density, (2) the number of hydrogen

atoms, (3) Log of the octanol/water partition coefficient from the linear atom type model, (4) the first kappa shape index of Kier, (5) the molecular refractivity

calculated from the atomic model based on the corrected protonation state, (6) sum of atomic van der Waals volume scaled on carbon atom, (7) the number of

aliphatic ethers, (8) Log of the octanol/water partition coefficient calculated from the atomic model based on the corrected protonation state, and (9) the molar

refractivity from the linear atom type model

Number of MC experiments Training set fraction (%) Training set correlation coefficient Validation set correlation coefficient

1000 50 0.86 0.76

1000 100 0.83 na

1 100 0.86 na

Fig. 7. Validation set results for 1000 MC fibrinogen adsorption model using descriptors in Table 8.
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which we had used the two techniques in the combined

method independently to accurately model biological

response to polymeric materials. Here we have shown that

using the two approaches in a complementary fashion

generates a much more powerful model through using the

advantages of both methods. Such an approach can be used

to define a simulation protocol for generating models for

other problems in biological response relevant to biomedi-

cal materials development such as the adsorption of proteins

other than fibrinogen, cell response/proliferation, as well as

immunological response (in the form of macrophage

genotypic expression). Efforts in this direction are currently

ongoing in our group.

Computational modeling approaches, which deploy

readily calculated polymer descriptors instead of expensive

and labor-intensive in vitro or in vivo measurements, can
Table 8

Statistics for fibrinogen adsorption model generated with Tg and q replaced by ca

atoms, (3) Log of the octanol/water partition coefficient from the linear atom typ

Number of MC exp. Training set fraction (%) Traini

1000 0.5 0.85

1000 1 0.80

1 1 0.80
significantly reduce the costs and labor associated with

identifying high-performance biomaterials for specific

applications. Once the surrogate model has been built

using experimental data for a specific biological response

(e.g. fibrinogen adsorption) for a selected subset of

polymers in a given library, we can use the model to

evaluate the bioresponse for the remaining polymers

entirely in silico, i.e. prior to synthesis. This not only

enables researchers to take full advantage of the recent

advances in combinatorial synthesis that allow the explora-

tion of a fantastic amount of different materials, but also

leads to the ability to design materials with optimized

properties for biomedical applications. The application of

methods of design optimization, well developed in other

fields, may lead to great advances in biomaterials

development.
lculated descriptors: (1) the molecular density, (2) the number of hydrogen

e model

ng set correlation coefficient Validation set correlation coefficient

0.74

na

na
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